Dalammenyelesaikan persamaan ini sebagai dasar penyelesaian adalah identitas trigonometri. Contoh bentuk persamaan trigonometri bentuk kuadrat sebagai berikut. 1. 2 sin2 x + sin x = 0 2. 2 sin2 x + 3sin x + 1 = 0 3. 2 cos2 x + 7 cos x - 4 = 0 4. 12 sin2 x + cos x - 6 = 0 Nah kali ini kita akan membahas persamaan kuadrat dalam sinus, cosinus, dan tangen. Sama dengan persamaan kuadrat pada umumnya, persamaan kuadrat dalam bentuk trigonometri bisa diselesaikan dengan tiga cara yaitu 1. memfaktorkan, 2.melengkapkan kuadrat sempurna, dan 3. rumus kuadrat atau yang lebih dikenal dengan rumus abc. Persamaantrigonometri untuk beberapa kasus dapat dirubah menjadi persamaan kuadrat yang memuat sinus, kosinus, atau tangen. Penyelesaiannya didapat dengan metode faktorisasi. Persamaan Trigonometri yang berbentuk persamaan kuadrat dalam sin, cos atau tan : IbuEka membeli 3 kg telur dan 1. Persamaan eksponen dapat diartikan sebagai persamaan yang didalamnya terdapat pangkat yang berbentuk fungsi dalam x dimana x sebagai bilangan peubah. Contoh Soal Persamaan Trigonometri Pakapri Net Maka untuk cara menghitung simpangan bakunya kita hanya perlu akar kuadrat nilai dari varian tersebut yaitu s 3032 551 Jadi nilai . Persamaan kuadrat adalah suatu persamaan yang memiliki derajat orde dua. Persamaan kuadrat yang biasanya kita temukan dalam bentuk ax$^2$ + bx + c = 0, bisa kita temukan dalam bentuk logaritma, bahkan dalam bentuk perbandingan trigonometri yaitu sinus sin, cosinus cos dan tangen tan. Nah, kali ini kita akan membahas persamaan kuadrat dalam sinus, cosinus, dan tangen. Sama dengan persamaan kuadrat pada umumnya, persamaan kuadrat dalam bentuk trigonometri bisa diselesaikan dengan tiga cara yaitu memfaktorkan, melengkapkan kuadrat sempurna, dan rumus kuadrat atau yang lebih dikenal dengan rumus abc. Bentuk umum persamaan kuadrat dalam bentuk sinus, kosinus, dan tangen dapat berbentuk sebagai berikut. asin$^2$x$^o$ + bsin$^o$ + c = 0 acos$^2$x$^o$ + btan$^o$ + c = 0 atan$^2$x$^o$ + btan$^o$ + c = 0 Untuk menyelesaikan persamaan-persamaan kuadrat di atas, langkah pertama adalah dengan membuat pemisalan untuk perbandingan trigonometrinya. Kita misalkan saja dengan p, maka bentuk umum persmaan kuadrat di atas akan menjadi ap$^2$ + bp + c = 0 baik untuk sinus, cosinus maupun tangen. Kemudian kita tentukan nilai p yang memenuhi. Setelah didapat nilai p, kita kembalikan p menjadi perbendingan trigonometri dan kita akan memperoleh persamaan trigonometri sederhana. Terakhir kita selesaikan persmaan tersebut dengan cara yang dapat di baca pada artikel ini. Namun, sebelum menentukan penyelesaian dari persmaan kuadrat di atas, ada syarat yang harus dipenuhi agar persamaan kuadrat di atas mempunyai penyelesaian. Untuk persamaan kuadrat dalam sinus dan cosinus, ada dua syarat yang harus dipenuhi yaitu Syarat perlu, D β‰₯ 0 Syarat cukup, -1 ≀ p ≀ 1 Sedangkan, untuk persamaan kuadrat dalam tangen, hanya memerlukan satu syarat yang harus dipenuhi yaitu Syarat perlu, D β‰₯ 0 Dengan D adalah diskriminan yang nilainya dapat ditentukan dengan D = b$^2$ - 4ac Sebagai contoh, apakah sin$^2$x$^o$ + 7sin$^o$ + 12 = 0 mempunyai penyelesaian? Penyelesaian Misalkan sinx$^o$ = p, maka persamaanya dapat dtulis menjadi p$^2$ + 7p + 12 = 0 D = b$^2$ - 4ac D = 7$^2$ - 4112 D = 49 - 48 D = 1 D > 0, syarat perlu terpenuhi p$^2$ + 7p + 12 = 0 p + 4p + 3 = 0 p + 4 = 0 atau p + 3 = 0 p = -4 p = -3 Nilai p < -1 Syarat cukup tidak terpenuhi Maka, dapat disimpulkan jika persamaan sin$^2$x$^o$ + 7sin$^o$ + 12 = 0 tidak mempunyai penyelesaian. Jika telah memahami syarat tersebut, sekarang kita lanjutkan dengan contoh soal persamaan kuadrat dalam bentuk trigonometri yang dapat diselesaikan. Contoh 1 Tentukan himpunan penyelesaian persamaan trigonometri cos$^2$x$^o$ - cos$^o$ - 2 = 0 dalam interval 0 ≀ x ≀ 360! Penyelesaian Misalkan cosx$^o$ = p maka persamaanya dapat ditulis menjadi p$^2$ - p - 2 = 0 p + 1p - 2 = 0 p = -1 atau p = 2 Jika p = -1, maka cosx$^o$ = -1 cosx$^o$ = cos 180$^o$ Untuk, x = 180$^o$ + k Γ— 360$^o$ k = 0 β†’ x = 180$^o$ + 0 Γ— 360$^o$ = 180$^o$ Untuk, x = -180$^o$ + k Γ— 360$^o$ k = 1 β†’ x = -180$^o$ + 1 Γ— 360$^o$ = 180$^o$ Jika p = -2, maka tidak memenuhi karena p < -1 syarat cukup tidak terpenuhi Jadi, penyelesaiannya adalah {180$^o$} Selain, bentuk-bentuk persamaan, seperti di atas ada beberapa kasus yang mengharuskan kita untuk mengubah suatu persmaan trigonometri yang dapat diubah menjadi persmaan kuadrat dalam sinus, cosinus, dan tangen. Untuk mempermudah mengubah persmaan yang demikian maka kita dapat menggunakan beberapa rumus trigonometri berikut. sin x$^o$ = $\frac{1}{cosec x^o}$ cos x$^o$ = $\frac{1}{sec x^o}$ tan x$^o$ = $\frac{1}{tan x^o}$ tan x$^o$ = $\frac{sin x^o}{cos x^o}$ cot x$^o$ = $\frac{cos x^o}{sin x^o}$ sin$^2$x$^o$ + cos$^2$x$^o$ = 1 1 + tan$^2$ x$^o$ = sec$^2$ x$^o$ 1 + cot$^2$ x$^o$ = cosec$^2$ x$^o$ sin 2x$^o$ = 2sin x$^o$cos x$^o$ cos 2x$^o$ = cos$^2$ x$^o$ - sin$^2$ x$^o$ cos 2x$^o$ = 1 - 2sin$^2$ x$^o$ cos 2x$^o$ = 2cos$^2$ x$^o$ - 1 tan 2x$^o$ = $\frac{2tan x^o}{1 - tan^2 x^o}$ Untuk lebih jelasnya, berikut akan disajikan contoh soal persamaan trigonometri beserta penyelesaiannya Contoh 2 Tentukan himpunan penyelesaian persamaan trigonometri cos 2x$^o$ - 3sin x$^o$ - 1 = 0 dalam interval 0 ≀ x ≀ 360! Penyelesaian cos 2x$^o$ - 3sin x$^o$ - 1 = 0 1 - 2sin$^2$ x$^o$ - 3sin x$^o$ - 1 = 0 - 2sin$^2$ x$^o$ - 3sin x$^o$ = 0 - sin x$^o$ 2sin x$^o$ + 3 = 0 tidak dilakukan pemisalan p, karena persamaan sudah sederhana -sin x$^o$ = 0 atau 2sin x$^o$ + 3 = 0 sin x$^o$ = 0 sin x$^o$ = -$\frac{3}{2}$ Jika, sin x$^o$ = 0 maka sin x$^o$ = 0$^o$ Untuk, x = 0$^o$ + k Γ— 360$^o$ k = 0 β†’ x = 0$^o$ + 0 Γ— 360$^o$ = 0$^o$ k = 1 β†’ x = 0$^o$ + 1 Γ— 360$^o$ = 360$^o$ Untuk, x = 180$^o$ - 0$^o$ + k Γ— 360$^o$ k = 0 β†’ x =180$^o$ - 0$^o$ + 0 Γ— 360$^o$ = 180$^o$ Jika sin x$^o$ = -$\frac{3}{2}$, persamaan tidak mempunyai penyelesaian karena sin x$^o$ < -1 Jadi, himpunan penyelesaianya adalah {0$^o$, 180$^o$, 360$^o$} Contoh 3 Tentukan Tentukan himpunan penyelesaian persamaan trigonometri 2cos$^2$ 2x$^o$ + 2sin$^2$ x$^o$ - 1 = 0 dalam interval 0 ≀ x ≀ 2𝞹! Penyelesaian 2cos$^2$ 2x$^o$ + 2sin$^2$ x$^o$ - 1 = 0 2cos$^2$ 2x$^o$ - 1 - 2sin$^2$ x$^o$ = 0 2cos$^2$ 2x$^o$ - cos$^2$ 2x$^o$ = 0 cos 2x$^o$2cos 2x$^o$ - 1 = 0 cos 2x$^o$ = 0 atau cos 2x$^o$ = $\frac{1}{2}$ Jika cos 2x$^o$ = 0 maka cos 2x$^o$ = $\frac{𝞹}{2}$ Untuk 2x = $\frac{𝞹}{2}$ + k Γ— 2𝞹 atau x = $\frac{𝞹}{4}$ + k Γ— 𝞹 k = 0 β†’ x = $\frac{𝞹}{4}$ + 0 Γ— 𝞹 = $\frac{𝞹}{4}$ k = 1 β†’ x = $\frac{𝞹}{4}$ + 1 Γ— 𝞹 = $\frac{5𝞹}{4}$ Untuk 2x = -$\frac{𝞹}{2}$ + k Γ— 2𝞹 atau x = -$\frac{𝞹}{4}$ + k Γ— 𝞹 k = 1 β†’ x = -$\frac{𝞹}{4}$ + 1 Γ— 𝞹 = $\frac{3𝞹}{4}$ k = 2 β†’ x = -$\frac{𝞹}{4}$ + 2 Γ— 𝞹 = $\frac{7𝞹}{4}$ Jika cos 2x$^o$ = $\frac{1}{2}$ maka cos 2x$^o$ = $\frac{𝞹}{3}$ Untuk 2x = $\frac{𝞹}{3}$ + k Γ— 2𝞹 atau x = $\frac{𝞹}{6}$ + k Γ— 𝞹 k = 0 β†’ x = $\frac{𝞹}{6}$ + 0 Γ— 𝞹 = $\frac{𝞹}{6}$ k = 1 β†’ x = $\frac{𝞹}{6}$ + 1 Γ— 𝞹 = $\frac{7𝞹}{6}$ Untuk 2x = -$\frac{𝞹}{3}$ + k Γ— 2𝞹 atau x = -$\frac{𝞹}{6}$ + k Γ— 𝞹 k = 1 β†’ x = -$\frac{𝞹}{6}$ + 1 Γ— 𝞹 = $\frac{5𝞹}{6}$ k = 2 β†’ x = -$\frac{𝞹}{6}$ + 2 Γ— 𝞹 = $\frac{11𝞹}{6}$ Jadi, himpunan penyelesaiannya adalah {$\frac{𝞹}{6}$, $\frac{𝞹}{4}$, $\frac{3𝞹}{4}$, $\frac{5𝞹}{6}$, $\frac{7𝞹}{6}$, $\frac{5𝞹}{4}$, $\frac{7𝞹}{4}$, $\frac{11𝞹}{6}$} Contoh 4 Tentukan himpunan penyelesaian persamaan trigonometri tan x$^o$ + cot x$^o$ = -2 dalam interval 0 ≀ x ≀ 360! Penyelesaian tan x$^o$ + cot x$^o$ = -2 tan x$^o$ + $\frac{1}{tan x^o}$ = -2 tan$^2$ x$^o$ + 1 = -2tan x$^o$ tan$^2$ x$^o$ + 2tan x$^o$ + 1 = 0 tan x$^o$ + 1$^2$ = 0 tan x$^o$ + 1 = 0 tan x$^o$ = -1 tan x$^o$ = 135$^o$ x = 135$^o$ + k Γ— 180$^o$ k = 0 β†’ x = 135$^o$ + 0 Γ— 180$^o$ = 135$^o$ k = 1 β†’ x = 135$^o$ + 1 Γ— 180$^o$ = 315$^o$ Jadi, himpunan penyelesaianya adalah {135$^o$, 315$^o$} Demikianlah tadi mengenai Menyelesaikan Persamaan Kuadrat dalam Sinus, Kosinus, dan Tangen, semoga bermanfaat. Pada kesempatan kali ini saya akan berbagi bagaimana cara menyelesaikan persamaan trigonometri tanpa menggunakan rumus. yang saya maksud, adalah rumus persamaan trigonometri berikut ini Persamaan Penyelesaian $\sin{x} =\sin{a^\circ}$ $\cos{x}=\cos{a^\circ}$ $\tan{x}=\tan{a^\circ}$ $x=a^\circ+k\times360^\circ$ atau $x=180-a^\circ+k\times360^\circ$ $x=\pm a^\circ+k\times 360^\circ$ $x=a^\circ +k\times 180^\circ$ Rumus-rumus yang lumayan susah untuk diingat 😁, tapi cara yang saya bagikan ini sebenarnya tidak saya sarankan, anggap saja hanya berbagi pengalaman bagaimana cara saya menutupi kekurangan yang jujur saja lemah dalam hapalan, toh matematika bukan ilmu hapalan kan? hehe 😁 Namun tetap, ada beberapa syarat yang mesti terpenuhi untuk bisa menggunakan cara ini, Pertama, kalian harus tau nilai trigonometri sudut istimewa pada kuadran I, sebagai berikut $\alpha$ $0^\circ$ $30^\circ$ $45^\circ$ $60^\circ$ $90^\circ$ $\sin{\alpha}$ $0$ $\frac{1}{2}$ $\frac{1}{2}\sqrt{2}$ $\frac{1}{2}\sqrt{3}$ $1$ $\cos{\alpha}$ $1$ $\frac{1}{2} \sqrt{3}$ $\frac{1}{2} \sqrt{2}$ $\frac{1}{2}$ $0$ $\tan{\alpha}$ $0$ $\frac{1}{3} \sqrt{3}$ $1$ $\sqrt{3}$ $-$ Kedua, kalian harus tau nilai trigonometri bernilai positif atau negatif berada di kuadran mana saja. untuk mempermudah mengingatnya, kita ingat yang bernilai positifnya saja yang biasa saya hapal menggunakan "jembatan keledai" dalam kalimat "semanis sinta tanpa cosmetik", sebagai berikut Kuadran I Semua bernilai positif $\sin$, $\cos$, $\tan$, $\sec$, $\csc$ dan $\cot$ Kuadaran II $\sin$ dan "kebalikannya" yaitu $\csc$ bernilai positif, yang lainnya negatif Kuadran III $\tan$ dan "kebalikannya" yaitu $\cot$ bernilai positif, yang lainnya negatif Kuadran IV $\cos$ dan "kebalikannya" yaitu $\sec$ bernilai positif, yang lainnya negatif perhatikan diagram berikut Nah, itulah dua syarat yang harus terpenuhi. Baiklah sekarang kita coba bahas soal persamaan trigonometri, kita mulai dari yang paling sederhana CONTOH 1 Tentukan penyelesaian dari persamaan $\sin{x}=\frac{1}{2}$ untuk $0^\circ \leq x \leq 360^\circ$. Jawab Pertama perhatikan batasan $x$ yaitu $0^\circ \leq x \leq 360^\circ$ artinya $x$ bisa berada di kuadran I, II, III atau IV. Sekarang perhatikan persamaan $\sin{x}=\frac{1}{2}$, bisa kita lihat nilai $\sin$ positif, artinya nilai $x$ yang memenuhi pastilah berada di kuadran I atau II karena $\sin$ positif di kuadran I dan II maka nilai $x$ yang memenuhi pastilah $x=30^\circ$ atau $x=150^\circ$ CONTOH 2 Tentukan penyelesaian dari persamaan $\cos{x}+1=0$ untuk $0^\circ \leq x \leq 360^\circ$. Jawab $\cos{x}+\frac{1}{2}\sqrt{2}=0\Rightarrow\cos{x}=-\frac{1}{2}\sqrt{2}$ Pertama perhatikan batasan $x$ yaitu $0^\circ \leq x \leq 360^\circ$ artinya $x$ bisa berada di kuadran I, II, III atau IV. Perhatikan persamaan $\cos{x}=-\frac{1}{2}\sqrt{2}$ nilai $\cos$ negatif, artinya nilai $x$ yang memenuhi berada di kuadran III dan IV. Maka nilai $x$ yang memenuhi adalah $x=180^\circ-45^\circ=135^\circ$ atau $x=180^\circ+45^\circ=225^\circ$ CONTOH 3 Sumber soal Matematika Peminatan Kls XI Intan Pariwara Penyelesaian persamaan $\cos{x}=-\frac{1}{2}\sqrt{3}$ untuk $0^\circ\leq x \leq 360^\circ$ adalah .... A. $x=30^\circ, 150^\circ$ B. $x=120^\circ, 210^\circ$ C. $x=150^\circ, 210^\circ$ D. $x=150^\circ, 300^\circ$ E. $x=150^\circ, 330^\circ$ Jawab Nilai $\cos$ negatif, artinya nilai $x$ yang memenuhi berada di kuadaran II dan III, maka nilai $x$ yang memenuhi adalah $x=180^\circ-30^\circ=150^\circ$ dan $x=180^\circ+30^\circ=210^\circ$.Jawaban C CONTOH 4 Sumber soal Matematika Peminatan Kls XI Intan Pariwara Diketahui $x_1$ dan $x_2$ merupakan penyelesaian persamaan $\sqrt{2}+2\cos{x}=0$ untuk $0^\circ\leq x \leq 360^\circ$. nilai $x_1+x_2=$ .... A. $210^\circ$ B. $270^\circ$ C. $300^\circ$ D. $330^\circ$ E. $360^\circ$ Jawab $\begin{align*}\sqrt{2}+2\cos{x}&=0\\2\cos{x}&=-\sqrt{2}\\ \cos{x}&=-\frac{1}{2}\sqrt{2}\end{align*}$ Nilai $\cos$ negatif, artinya nilai $x$ yang memenuhi berada pada kuadran II dan III, maka $x_1=180^\circ-45^\circ=135^\circ$ $x_2=180^\circ+45^\circ=225^\circ$, sehingga $x_1+x_2=135^\circ+225^\circ=360^\circ$Jawaban E CONTOH 5 Sumber soal Matematika Peminatan Kls XI Intan Pariwara Penyelesaian persamaan $\tan{x+15^\circ}=-1$ untuk $180^\circ \leq x \leq 360^\circ$ adalah .... A. $x=135^\circ$ B. $x=225^\circ$ C. $x=300^\circ$ D. $x=315^\circ$ E. $x=330^\circ$ Jawab Batasan $x$, $180^\circ \leq x \leq 360^\circ$ bisa kita ubah menjadi $180^\circ+15^\circ \leq x+15^\circ \leq 360^\circ+15^\circ$ $\Rightarrow 195^\circ\leq x+15^\circ\leq 375^\circ$ Jika kita misalkan $x+15^\circ=p$, maka $\tan{p}=-1$ dengan $195^\circ\leq p \leq 375^\circ$ $\tan$ bernilai negatif, artinya $p$ yang memenuhi berada di kuadran IV, dengan demikian, nilai $p=360^\circ-45^\circ=315^\circ$ $\begin{align*}x+15^\circ&=p\\x+15^\circ&=315^\circ\\x&=315^\circ-15^\circ\\x&=300^\circ\end{align*}$Jawaban C CONTOH 6 Sumber soal Matematika Peminatan Kls XI Intan Pariwara Himpunan penyelesaian persamaan $2\cos{2x-60^\circ}=1$ untuk $0^\circ \leq x \leq 180^\circ$ adalah .... A. $\{ 0^\circ, 45^\circ, 135^\circ \}$ B. $\{0^\circ, 60^\circ, 135^\circ\}$ C. $\{0^\circ, 60^\circ, 180^\circ\}$ D. $\{30^\circ, 45^\circ, 180^\circ\}$ E. $\{30^\circ, 135^\circ, 180^\circ\}$ Jawab $\begin{align*}2\cos {2x-60^\circ}&=1\\ \cos{2x-60^\circ}&=\frac{1}{2}\end{align*}$ Batasan $x$ $0^\circ \leq x \leq 180^\circ \Leftrightarrow -60^\circ \leq 2x-60^\circ \leq 360^\circ$ Misal $2x-60^\circ = p$, maka $\cos{p}=\frac{1}{2}$ untuk $-60^\circ \leq p \leq 300^\circ$ karena nilai $\cos$ positif, maka $p$ yang memenuhi berada di kuadran I, dan IV. Perhatikan juga "batasan" $p$, $-60^\circ$ berada di kuadran IV, memenuhi. jadi $p=-60^\circ, 60^\circ, 300^\circ$ $2x-60^\circ=p\Leftrightarrow x=\frac{p+60^\circ}{2}$ untuk $p=-60^\circ\Rightarrow x=\frac{-60^\circ+60^\circ}{2}=0^\circ$ untuk $p=60^\circ\Rightarrow x=\frac{60^\circ+60^\circ}{2}=60^\circ$ untuk $p=300^\circ\Rightarrow x=\frac{300^\circ+60^\circ}{2}=180^\circ$Jawaban C ο»ΏMath SMAHomeTeacherKelas XKelas XIMatematika Wajib XIMatematika Minat XIKD. 1 Persamaan TrigonometriReview TrigonometriSudut Khusus dan KuadranGrafik TrigonometriIdentitas TrigonometriPersamaan Trigonometri sederhanaPersamaan Trigonometri dengan IdentitasnyaPersamaan Trigonometri Bentuk KuadratKD. 2 Jumlah dan perkalian TrigonometriKD3. LingkaranKD4. PolinomialKelas XIIGaleriMath SMAHomeTeacherKelas XKelas XIKelas XIIGaleriMore11 PERSAMAAN TRIGONOMETRI Bentuk Kuadrat dan updated Report abuse

menyelesaikan persamaan trigonometri yang berbentuk persamaan kuadrat